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Abstract

Using ideas of supersymmetric quantum mechanics we construct a class of conditionally exactly solvable potentials which
are supersymmetric partners of the linear and radial harmonic oscillator. Furthermore we show that this class of problems
possesses some symmetry structures which belong to non-linear algebras. (© 1997 Elsevier Science B.V.

1. Introduction

In quantum mechanics, there are only a few po-
tentials for which the Schrodinger equation is exactly
solvable [1]. The class of exactly solvable problems
can however be enlarged by using the method of gener-
ating isospectral Hamiltonians [2-6]. Recently a new
type of problems has been added to the class of ex-
actly solvable ones. These are called conditionally ex-
actly solvable (CES) problems [7,8]. The main char-
acteristic of the CES problems is that they are exactly
solvable when the potential parameters assume some
specific numerical values. In this Letter our aim is to
construct a number of CES potentials using ideas of
supersymmetric (SUSY) quantum mechanics [9,10].
We shall also study the symmetry structure of these
problems and it will be shown that these symmetries
are related to some closed non-linear algebras.

In the next section we will briefly review some alge-
braic properties of SUSY quantum mechanics which
are relevant in our construction of CES potentials. In
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Section 3 we construct CES potentials which are part-
ner potentials of the one-dimensional harmonic os-
cillator. Besides the unbroken SUSY these problems
also possess a non-linear algebra which is quadratic.
Section 4 discusses the same approach for the radial
harmonic oscillator. Here SUSY is broken and the re-
sulting non-linear algebra for the CES problems is of
cubic type. Finally, in Section 4 we outline a general
construction principle for CES potentials which are
the SUSY partners of exactly solvable ones.

2. Supersymmetric quantum mechanics
In supersymmetric quantum mechanics [9,10] one

considers a pair of so-called partner Hamiltonians H
which are defined by

. &
H, =AA =—§@+V+(X),

i &
H_=AA=—§@+V._(X), (1)
Vi(x) = gW2(x) £ 3W'(x), (2)
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where W(x) denotes the SUSY potential, W (x) =
(d/dx)W(x), and the operators A and AT are given
by

1 d
A=—|—+W ,
5 ( o T (x))
at=-L —i+W(x) (3)
a2 dx '
Possible zero-energy eigenfunctions of H. are neces-
sarily of the form

i (x) =Cexp(:{:/dtW(t)), (4)

with C being the normalisation constant. If either of
the functions (4) is normalisable then supersymme-
try is said to be unbroken, while if none of them is
normalisable supersymmetry is broken.

In the case of unbroken SUSY (let us assume that
!Pé_) is normalisable) we have the following spec-
tral properties among the eigenvalues E{*) and eigen-
functions W,gi) of the partner Hamiltonians Hy, n =
0,1,2,...,

ES7 =0, Ef]=EP>o0, (5)
1 -)

wih = —Aan),
En+1

(=) - 1 Atgp () (6)

+1 ey
n E’(1+) n

On the other hand in the case of broken SUSY we
have the relations

EP=E~) >0, (7)

1 _
Vit = ——Ap()

n /Er(]_)

() o

n /r(1+)

Al (8)

3. Construction of CES potentials for unbroken
SUSY

Let us now turn to the construction of the CES po-
tentials which are SUSY partners of the harmonic os-
cillator potential on the real line. To this end we con-
sider the following family of SUSY potentials [11],

N
d
W(x)=x+ Z 5 In(1+ gix%)
el

8 =0, (9

which reduces to the SUSY potential of the linear har-
monic oscillator for g; = g, = ... = gy = 0. The cor-
responding ground-state wavefunction for H_ reads
according to (4)

N
757 () = Ceaxp(—* /D) [T(1+g0H™" (10

=1

and is normalisable. Hence, SUSY is unbroken.

In order to demonstrate our principle for construct-
ing CES potentials with the help of SUSY quantum
mechanics let us first consider the case N = 1. In this
case the partner potentials (2) read

2
X os—2 s
Vi(x)==— 421"~ 45
+(x) 7 4 1+ g2 +3, (11)
2 g +2 493 x?
Vig)="— ! 5 (12
= itae T amp T2 U2

Now if we put g; = 2 then the first of these potentials,
V., reduces to that of the linear harmonic oscillator,

+3, (13)

B 4 5 162 18
(14+2x%) (14222 27

(14)

In this case the energy eigenvalues of the Hamiltonian
H, are obviously given by E{™) = n 4 3 and the cor-
responding eigenfunctions (H, denotes the Hermite
polynomial of degree n)

v (x) =7 V42" "1 2H,(x) exp(—x2/2)
(15)

are the well-known eigenfunctions of the linear har-
monic oscillator [1,12]. Because of this knowledge
we can now obtain the eigenvalues and eigenfunctions
of H_ associated with the potential (14) viathe SUSY
relations (5) and (6). The ground-state wavefunc-
tion follows from (10) and the ground-state energy
vanishes because of unbroken SUSY. To summarise,
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Fig. 1. The CES potential (14) (solid line) and its SUSY partner
(13) (dashed line). The horizontal lines indicate the first five
eigenvalues of H_ associated with this CES potential and the up
and down arrows sketch the action of the creation and annihilation
operators BT and B on eigenstates of H—. Note that the ground
state (Eé_) =0) is isolated due to unbroken SUSY.

the complete spectral properties of H_ with potential
(14) are given by (n=0,1,2,...)

EST =0, E)=n+3,
w{T(x) = C(1+2x%) " exp(—27/2),
w () = (n+3)7124Tw D (x)
exp(—x>/2)
V2 nl(n +3) 7

4x
X (Hn-H(x) +

o H,,(x)) . (16)

Here we would like to stress that the potential in (12)
is not exactly solvable unless g; = 2. That is, (12)
is indeed a CES potential. In Fig. 1 we have shown
graphs of the two potentials (13) and (14).

Here naturally arises the question whether this con-
ditionally exact solvability of H_ can be related to
some underlying symmetry structure. This expecta-
tion is supported by the fact that its SUSY partner H
does have a well-known Lie-algebra structure which
allows for a complete and exact solution of its eigen-
value problem by pure algebraic methods. Introduc-
ing the standard harmonic-oscillator annihilation and
creation operators

1 d
te — [ —— + 17
¥ 2( dx x), i

and noting that H, = a'a+3 one immediately verifies
that

[a,a'] =1.
(18)

[H ,a]l =—a, [Hy,a'l=ad",

The annihilation and creation operators act on the
eigenstates of H, as follows,
a¥ it = /nwt)

n—1-

atw =Vn 1w (19)

Now the SUSY relation (5) and (6) suggests to con-
struct similar annihilation and creation operators for
the system H, [3],

B=A'aA, B'=ATa'A. (20)

Actually, from (6) with E.7) = E(Y) = n+ 3 and
(19) one finds (n=0,1,2,...)

BY ) =\/n(n+2)(n+3) ¥,

Bly ) =/ (n+ D(n+3)(n+H ¥ (21)

and B!Ifé') = B“Pé_) = (. Hence, by repeated ap-
plication of the operator BT we can create all states
above the first excited state ‘Pl(_) of H_,

. 213! .
Vol = Y =)
" \/”!(”+2)!(n+3)1 (BT) ™, (22

where the normalised state 1[fl(_) is given in (16).
With the help of (21) it can be shown that H_, B and
Bf satisfy the following commutation relations,

[H_,B]=-B, [H_,B'1=BT,
(B',B] =5H_ — 3H% (23)

and thus the symmetry algebra of the CES problem
H_ is a quadratic one. Let us note that the alge-
bra (23) as it stands is only defined on the orthogo-
nal complement of the kernel of H_. That is, on the
space spanned by the excited energy eigenfunctions
of H_ (cf. Fig. 1). However, because of the relations
H_w{7) = Bw{™) = Bf¥{™) = 0 the domain for this
algebra may trivially be extended to the full Hilbert
space L?(R). Nevertheless, the state %) cannot be

created via B' from the ground state Wé_) and vice
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versa 'Ifé_) cannot be reached via an application of B
on I1’1(_) because B’Jfl(—) =0

Next we consider the case N =2 in (9). As in the
previous case we find here that for a particular choice
of the now two parameters g and g» the potential V,
reduced to that of the harmonic oscillator. To be more
explicit we have

Ve(x) =7 +3, (24)
2 4 / _ _ 2 _
Vo(x) = = 4 38182 (&2 —& )2 &
2 1+ g1x
Agig/(g2—8) +2+ & " 4g1%°
1+ gox? (1+g1x2)?
4g)x*
B 41, (25)
(1 + g2x?)

where we have used the following parameter set in V..,

g1 =2—1+/8/3, g@=2++/8/3. (26)

For this set of parameters we can now obtain (also via
SUSY) the spectral properties of H_ with potential
V_ as given in (25). Because of unbroken SUSY we
have (n=0,1,2,...)

ES7V =0, EY)=n+5,
i (x) =C(1+ g1x*) ™!
x (14 gox?) ™! exp(—x2/2) ,
() (x) = (n+5) 7AW (x)
exp(—x?/2)

V2l (n + 5)

2g81x 2g2x
H, H, :
X |: +1(-x) + (1 +g1x2 + 1+g2x2) (x)]
(27)

Thus V_ as given in (25) is yet another CES potential,
that is, exactly solvable for the particular choice (26)
of the two parameters g; and g».

In this case the algebra corresponding to (23) is
given by

[H_,Bl=-B, [H_,B'1=8B",
[BY,B] =9H_ —3H* , (28)

where B and B! are defined as in (20) but now with

1 d 2g1x 2g0x
A=—(—+x+ .
\/i(dx * 1+g1x2+1+g2x2
(29)

Similarly, we have relations analogous to those given
in (21) where the factors (n+2), (n+3) and (n+4)
have to be replaced by (n+4), (n+5) and (n+6),
respectively. Finally the relation analogous to (22)
reads

_ 415! Ao
@ () = t b=
ntl \/;!(n+4)!(n+5)! (BY) i

n=0,1,..., (30)

and the ground-state wavefunction is given by (10)
with N =2 and parameters (26).

Clearly if we consider higher values of N, we can
obtain further CES potentials which are SUSY part-
ners of the harmonic oscillator in one dimension. The
underlying symmetry algebra for the excited states will
be of the form

[H_,B]=-B, [H-,B']=8",
(B',B] =aH_ —3H*, (31)

where « is some constant depending on the N potential
parameters g1, g2, - - - &N-

4. Construction of CES potentials for broken
SUSY

So far we have studied CES systems for unbroken
supersymmetry. In this section we shall construct CES
potentials which are SUSY partners of the radial har-
monic oscillator with broken SUSY. In other words
we will now consider quantum mechanics on the half
line x > 0. The family of SUSY potentials which we
will consider is a generalisation of the previous one,

N
W(x)=x+21+gix2+ , y=0. (32)

The corresponding zero-energy solutions read accord-
ing to (4)

N
Vféi) (x) = CxT*D exp(+x2/2) H(l o
=1

(33)
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Clearly, because of y > 0, neither ’I’é"’") nor 11’0(") are
normalisable and hence SUSY is broken.

Here let us only consider the simplest case N = 1
for which the partner potentials read

B
_x yiy+ 1) 2yei+3s1 -2 2y +7
(34)
2 (y+D(y+2)  2y+5
Vo(x) = —
(x) 2+ >3 5
4gix? 2 -2
81x22 'Ygl+812 . (35)
(1+g1x°) 14+ g1x

Obviously, for gy = 2/(2y + 3) the potential V. re-
duces to that of the “radial harmonic oscillator”. That
is, the effective radial potential of a three-dimensional
isotropic harmonic oscillator for a given angular mo-
mentum 7. Note that we do not limit ourselves to in-
teger values of y but allow for all non-negative real
values vy > 0. The spectral properties of this one-
dimensional quantum system are well known [1,12],

EV=2n+2y+5, n=0,1,2,..., (36)

2n!
PP (x) = [
I'(n+y+3)

X L;{*'l/z(xz)x77L1 exp(—x2/2), (37)

with L% denoting the Laguerre polynomial of degree n
and parameter « [12]. Therefore, because of broken
SUSY by (7) and (8) we have

EST) =2n+2y+5,

() = —1___ Aty (5 , (38)
" V2n+2y+5 §
where
1 d v+ 1 2g1x
Al = | s = + .
ﬁ( ax F T 1+g1x2)

Thus we have found yet another CES potential, note
that g; = 2/(2y + 3), which is associated with the
radial harmonic oscillator. See Fig. 2 for the graphs of
the two partner potentials (34) and (35).

With the help of the annihilation and creation oper-
ators (19) for the harmonic oscillator on the real line
we may introduce annihilation and creation operators
for the radial harmonic oscillator [12],

30

25 -

20

Vi(x)

15 |+

ok A\ 5=

5 1 1 | 1 | 1 1

Fig. 2. The CES potential (35) (solid line) and its SUSY partner
(34) (dashed line) for y =1 and g =2/5. The horizontal lines
indicate the first four eigenvalues of the corresponding SUSY
Hamiltonians H. . Note that due to broken SUSY the creation and
annihilation operators Df and D act on all eigenstates of H_ as
indicated by the up and down arrows.

o, y(y+1)
=q - —,
2x2( )
+1
ot =(ah? - T, (39)

which together with H, for (34) obey the following
linear algebra [12],

[H.,cl==2c, [Hycl=2,

[c,cfl =4(H, —y—=1/2). (40)

The operators ¢ and ¢’ can be shown [12] to act on
the eigenstates of H, as follows? ,

fx n—1

Ao = 2/ (n+ D(n+y+3/2)¥ . (42)

To determine the algebraic structure associated with
the CES potential (35) we now consider the following
operators,

D=AlcA, D'=ATc'A (43)

where

1 d y+1 2g1x
A=—|—
ﬁ(dx+x+ x +1-’;—g1x2>

with g; = 2/(2y+3). The operators D and D' act like
annihilation and creation operators on the eigenstates
of the partner Hamiltonian H_

3 Note that in Eq. (18.3.13") of Ref. [12] the prefactor on the
right-hand side should read —2+/n(n+ a — %).
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D¥ 7 = —Aln(n+y+1/2)(n+vy+3/2)
x (n+7y+5/2)1"2w ),
D) = —4[(n+ )(n+y+3/2)
X (n+y+5/2)(n+y+7/D1Vw) . (44)

Hence, we also have

v = ()L 4D, 0,0+,

x (DHYrw{™. (45)

with (z), = I'(z + n)/I'(z) being Pochhammer’s
symbol. The normalised ground-state wavefunction
explicitly reads

W m) = Atw{D(x)

1
V2y+5

_ 2
SV F(y+5/2)

2

1 +g1x2) A exp(~x"/2) (46)

With the help of (44) it can be shown that D, D' and
H_ obey the following non-linear algebra which is of
cubic type,

[H_,D] =-2D, [H_,D'1=2D",

[D!,D] = —8H +(12y+42)H: — (24y+52)H_ .
(47)

In contrast to the unbroken SUSY cases this symmetry
algebra is realised over all the states (cf. Fig. 2). As
in the example of unbroken SUSY, in this case also
we can obtain further CES potentials by considering
N=23,....

5. Concluding remarks

In this work we have constructed a number of CES
potentials, which are the partner potentials of the solv-
able linear and radial harmonic oscillator. Obviously,
the present approach can also be applied to other
solvable problems characterised by a shape-invariant
SUSY potential &@. See, for example, Ref. [10]. Using
then the ansatz W(x) = @(x) + f(x) the potential

Vi(x) = 2[@%(x) + &' (x) + £ ()
+20(x) f(x) + ()] (48)

will be exactly solvable if the function f obeys the
generalised Riccati equation

£2(x) +2®(x) f(x) + f'(x) = const. (49)

for certain values of parameters contained in @ and f.
Then the partner potential

V_(x) =1 [@*(x) — & (x) —2f'(x) + const.]
(50)

will become a CES potential. The corresponding spec-
tral properties of H_ are easily obtainable via the
SUSY relations (5)-(8). Note that the present ap-
proach differs from the usual one [4,6], which also
leads to Eq. (49), however, with a vanishing constant.
Whereas in the usual approach one seeks for a solu-
tion of (49) for a given @ and vanishing constant*,
the present approach looks for solutions of (49) with
a non-vanishing constant but particular values of pa-
rameters contained in @. Another difference between
the present approach and the usual one is that the for-
mer is also applicable to cases with broken SUSY.

In this paper we have also obtained the algebraic
structure associated with the newly found CES prob-
lems. In contrast to the usual exactly solvable prob-
lems which are associated with linear Lie algebras,
these CES problems can be related to non-linear al-
gebras. To be more explicit, the CES potentials which
are SUSY partners of the linear oscillator will give
rise to a quadratic algebra. In essence, this is a conse-
quence of the cubic type of the ladder operators (20)
for the CES potential. In contrast to this, the ladder
operators (43) for the SUSY partners of the radial
harmonic oscillator are of quartic type (a fourth-order
differential operator) and hence will lead to a cubic
algebra. For other shape-invariant potentials there are
no such ladder operators known and, hence, we do not
expect to find for the corresponding CES potentials,
obtained via the general method outlined above, some
non-linear algebraic structure. Clearly, the linear and
radial harmonic oscillator treated in the present work
are very special in this respect.

41n this case, (49) actually reduces to Bemoulli’s equation,
which is much easier to solve.
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Finally, let us note that these types of symmetry al-
gebras are not totally unknown and have been stud-
ied before [ 13-16] in connection with other quantum
models. However, to our knowledge, the present work
1s the first to related such non-linear algebras with
SUSY and CES problems.
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